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Historical Background

m Initial name in 1978: Icarus

m Developed originally as Monte Carlo analysis to support aging
analysis for US Air Force
– AGM 65A,B,C,D,E+

» O-ring on hydraulic actuation system
» Electronic packaging on guidance system

– Low level laser guided bomb (LLLGB)
» Operational fatigue of release mechanism

– Minuteman ICBM
» Evaluate replacement parts in support of MMII-III Hi-Rel program

m Extended to include MVFOSM (1981)

m Extended to include FORM (1986)
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Historical Background

m Integral part of the Systems Engineering design curriculum at AF
Institute of Technology (1986-1994)
– Extended to include advanced analytical methods
– Emphasis moved from storage reliability to design

» stochastically optimize
l aircraft wing structures - weight vs reliability (manual perturbation)

l WASP - flight stability, payload, fuel, pilot response, etc. in presence of
uncertainty in operational conditions (Multi-objective RSM-based opt)

» risk analysis of RTG on Ulysses spacecraft (AMV)

» optimal composite lay-up - ABDR program (GA-based opt)
» structural integrity programs - ASIP, AVIP, ENSIP

m Sandia National Labs - 1996+
– Thermo-mechanical fatigue of lead-free solders

– Stress-voiding of IC interconnections
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Historical Background

m Cassandra Project started in October 1997

m Objectives of Cassandra Project
– Assist materials engineers with

» analysis of stockpile aging related issues
» reliability impact of new materials or manufacturing processes

– Make structural reliability and uncertainty methods accessible to
design engineers

m Historical Footnote: Cassandra was the daughter of Priam, ruler of Troy, and Hecuba.  As a child she
received the gift of prophecy from the Greek god Apollo.  However, the beautiful young woman later refused
the advances of Apollo.  In his rage, he added to the gift of prophecy the curse that she would never be
believed.  The people of Troy generally believed her to be insane and felt that she was bringing bad luck to
the war effort.  Her announcement that there were Greek warriors in the wooden horse fell on deaf ears and
Troy was soon sacked and occupied by the Greeks.
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Historical Background

m Currently co-chair of Airworthiness subcommittee within SAE to
develop design standard for application of uncertainty methods
in the design of aircraft structures

m Invited to be member of special AIAA committee to develop
standards for application of probabilistic design methods to
aircraft structures and avionics

m Asked by SAE G-11/PM committee to establish a working group
on probability-based prognostics/diagnostics
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Reliability Modeling Objectives

m Provide a quantitative measure for anticipating potential stockpile problems
m Identify areas where additional testing or data collection would contribute most

to increasing confidence in the life prediction estimates
m Provide an objective means of prioritizing design or manufacturing alternatives

based on their impact on stockpile reliability
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Sources of Uncertainty

System Model

External
Parameters

Internal 
Parameters

Model Uncertainty

Parameter Uncertainty

Observational Uncertainty

Observed
Response

Internal Parameters: yield
strength, fracture toughness,
chemistry phase, intermetallic
composition, geometry, electrical
resistance,  etc.

External Parameters: humidity,
temperature, atmospheric
chemistry, applied voltage, etc.
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Modeling: shape/size of FEM grid,
numerical approximations,
linearization, etc.
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Reliability Characterization Cycle
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Software Structure

m Three major elements
– CRAX

» Tcl/Tk-based user interface to
Cassandra uncertainty engine

» Flexible to specific analysis
problems

– Cassandra
» Suite of uncertainty analysis

routines - analytical/sampling

» Infinitely extensible to new
methods

» Statistical methods validated on
all computing platforms

– Performance characterization
» Supplied by user
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CRAX - User Interface

m Flexible -
– different processing platforms (NT,95, Mac, Unix, etc.) depending

on computational requirements of particular problem
– unique user input requirements

– CORBA compliant version available to allow interface with large
computer models, both commercial and legacy codes (i.e., finite
element codes for structural analysis)
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Cassandra Reliability Software Library

m Cassandra is an uncertainty analysis engine composed of various
methods for integrating multidimensional functions of random variables

m Developed in response to:
– need by engineers to address reliability and aging effects for stockpile

safety assessment

– need to test and validate new methods for structural reliability and
uncertainty analysis methods

– avoid ‘re-inventing the wheel’ for each new reliability problem

m All routines are covered by copyright and trademark restrictions
m Technical Advance prepared for algorithms developed in FY99

m Preliminary inquires about commercialization
m Current computational capabilities are approximately 2-3 years ahead

of rest of U.S. and about 15 years ahead of other related Sandia efforts
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Processing Architecture
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Deterministic Corrosion Model

m Advantages to early development
— increases experimental efficiency
— provides time for addressing unique numerical

needs
— maintains focal point for ultimate objective

m  Governing equation for intrinsic kinetics
— surface rate constant
— environmental parameters

» temperature
» relative humidity
» contamination

CRbondpad =  f([Cl2])••••g(T)••••h(RH)
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The governing equation for corrosion
was be modified to include uncertainty

m Random variables -
– I(defects) : 0 or 1 (3% probability of 1)
– ko : lognormal pdf. based on n=70

– T(.) and H(.) : periodic deterministic variations with Gaussian
distributed error - zero mean, unique standard deviation

where x = 1, β = 2.5, η = 55, Ea = 17.5 kcal/mole (0.8 eV)
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Response Z(s)
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• Deterministic simulations of aging
degradation can take from minutes to
days per function evaluation

• Sandia unique software library
routines can significantly reduce the
number of computer simulations to
achieve accurate results for
component level analyses

• Deterministic simulations of aging
degradation can take from minutes to
days per function evaluation

• Sandia unique software library
routines can significantly reduce the
number of computer simulations to
achieve accurate results for
component level analyses

Reliability of Single Bondpad



NWC Mtg 18

Sensitivity Analysis
parameter variation

Reliability of PEM Device in Gulf Coast Environments
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Interconnection Time to Failure
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Impact of Component Reliability on
Subsystem Reliability

• Previous efforts at integrating
component aging into subsystem
reliability analysis were somewhat
successful after 2 years of research

• Using unique structure of CRAX
interface and Cassandra library it
only took 2 weeks to get results

• Previous efforts at integrating
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reliability analysis were somewhat
successful after 2 years of research

• Using unique structure of CRAX
interface and Cassandra library it
only took 2 weeks to get results
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ChileSPICE Results

Time  vs  Reliability
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• Sandia unique software library routines
can significantly reduce the number of
computer simulations to achieve accurate
results for system level analyses
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Stress Voiding

m IC interconnects are on the order of 1-3
microns wide and getting narrower as
packaging density increases

m Manufacturing takes place at elevated
temperatures (~700K)

m As part cools, residuals stress in aluminum
cause mass transport leading to nucleation
and growth of voids in interconnects

– voids nucleate and grow even without applied
voltage (storage conditions)

– under operational use, voltage differential leads to
electromigration of material - accelerating void
growth and further shortening useful life.

m IC interconnects are on the order of 1-3
microns wide and getting narrower as
packaging density increases

m Manufacturing takes place at elevated
temperatures (~700K)

m As part cools, residuals stress in aluminum
cause mass transport leading to nucleation
and growth of voids in interconnects

– voids nucleate and grow even without applied
voltage (storage conditions)

– under operational use, voltage differential leads to
electromigration of material - accelerating void
growth and further shortening useful life.
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Experimental Model
(Yost SAND 99-0601)

m Assumptions
– Voids initiate at roughly the same time during manufacturing
– Voids are uniformly distributed across  conductor line

– Components are stored in an isothermal environment
– Residual stress exists in conductor line after manufacturing

m Model

m Failure defined when void length exceeds a critical
fraction of line width
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Probability Distribution Functions
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Results
impact of mean void spacing and grain size
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